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Abstract

Previous work on aluminum and stainless steel show that the density of dislocations within the subgrain interior (or the network

dislocations) are associated with the rate-controlling process for five-power-law creep-plasticity. Furthermore, the hardening in

stainless stress is shown to be consistent with the Taylor relation if a linear superposition of ‘‘lattice’’ hardening (so, or the stress

necessary to cause dislocation motion in the absence of a dislocation substructure) and the dislocation hardening (aMGbq1=2) is
assumed. It is now shown that the same relationship appears valid for aluminum with the same values of a observed in other metals,

where dislocation hardening is established. It appears that the constant, a, is temperature independent and, thus, the dislocation

hardening is athermal. It is also shown that constant-stress creep behavior, where the total interior dislocation density decreases

during primary (hardening stage) creep, is consistent with Taylor hardening.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Steady-state creep (Stage II or secondary creep) is

usually described by [1]

_eess ¼ A
� v
Gb

�3 DsdGb
kT

" #
ðrss=GÞn; ð1Þ

where the exponent, n, is typically 4–7, Dsd is the lattice

self-diffusion coefficient, A is a constant, and v is the

stacking fault energy. This equation is applicable above

0:6Tm. The stress and strain rates refer strictly to steady-

state (or secondary, or Stage II) creep plasticity. The

steady-state microstructure evolves during primary

creep. The dislocations form a three-dimensional sub-
grain aggregate often characterized by an average sub-

grain size, k. Within these subgrains is an (elevated)

dislocation density, q, usually presumed to form a

Frank network. The subgrain boundaries typically have
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an associated misorientation, h, of the order of a degree

or so, much less than those boundaries of the initial

polycrystalline aggregate. It is often assumed that, dur-

ing steady state, hardening processes are balanced by

dynamic recovery processes [1]. It is generally under-

stood that for steady-state structures, kss is related to qss

and that feature associated with creep resistance or the
rate-controlling mechanism for five-power-law creep is

not obvious by simple inspection of the microstructures,

since both steady-state creep-rate and creep-stress vary

predictably with their kss and qss.

Most theories for five-power-law creep (Tm > 0:6Tm)
of pure metals and Class M (or Class I) alloys, that be-

have similarly to pure metals, rely on some aspect of the

subgrain microstructure to describe the rate controlling
mechanism. Many of the more recent theories rely on the

details of the subgrain boundaries such as the spacing, d,

of the dislocations that comprise the boundaries (related

to the misorientation angle, h, across boundaries) or the
subgrain size, k [2–15]. Subgrain boundaries have also

been suggested to be the site of elevated long-range in-

ternal backstress [16–20] and the rate controlling process

at the subgrain boundary has been associated with these
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stresses. Other work, however, placed this conclusion of

long range internal-stresses in question [21–24]. The

dislocations not associated with the subgrain bound-

aries, which are presumed to form a Frank network, are

less commonly, especially recently, claimed to be asso-
ciated with the rate controlling process of five-power-law

creep. Dislocation network theories [1,25–30] generally

suppose that the creep behavior is explained in terms of

network coarsening by the climb of the nodes and the

activation of (critical-sized) links of the network. The

acceptance of these models has been limited. This may be

somewhat unjustified in view of some careful, and now

well-established, experiments. For example, experiments
under five-power-law conditions show that there is really

no doubt that the elevated temperature flow-stress of

AISI 304 stainless steel (Class M alloy) is controlled by

the density of dislocations, q, not associated with the

subgrain boundaries [31]. Also, recent experiments have

also shown that the flow properties of high purity alu-

minum and some (Class A) aluminum alloys under five-

power-law creep conditions, appear independent of the
subgrain size, k, or the nature (misorientation) of the

subgrain boundaries [32–35].

Traditionally, five-power-law creep theories have

necessarily focused on the steady-state or secondary creep

behavior. Of course, if a particular feature is associated

with the rate controlling process for steady-state five-

power-law creep, then the yield stress at a fixed temper-

ature and strain rate (within the five-power-law regime)
under non-steady-state conditions would still be expected

to be a function of the dimensions of this feature. This is

basically equivalent to suggesting that non-steady-state

behavior would be determined by the same microstruc-

tural features important for steady state. Accordingly, it

has been suggested that primary creep and creep transient

conditions may obey a relationship,

_ee ¼ A0
� v
Gb

�3

ðsÞp
0
½DsdGb=kT �ðr=GÞN ; ð2Þ

where s is a substructural term, originally formulated by
Sherby and coworkers [36] to be (1=kss) with p0 ffi 3.

Sherby also suggested that N ¼ 8 for aluminum in par-

ticular, and, perhaps, other metals as well. It was as-

sumed that the activation energy for (non-steady-state)

flow is equal to the activation energy for lattice self-

diffusion over the five-power-law regime. Certainly, this

equation has been illustrated to have some phenome-

nological merit, and fairly sophisticated phenomeno-
logical equations have been based on this relationship

[37]. Sherby and coworkers suggested that the form of

Eq. (2) was reasonable since the established relation-

ships [1] between the strengthening variables and the

steady-state stress, e.g.,

rss ¼ C1ð1=kssÞ�1 ð3Þ

G

or

rss

G
¼ C2ðqssÞ

p
; ð4Þ

where p is ffi 0:5 or

rss

G
¼ d�q ð5Þ

when substituted into Eq. (2), would yield the classic

five-power-law equation (1). An important question is

the nature of the ‘‘s’’ term in Eq. (2) [i.e., q; d (or h), k].
There may be some problems with this logic, and N not

being constant over the five-power-law regime may

just be one [1]. Although outside the intended scope of

this paper, another complication is that the activa-

tion energies in Eqs. (1) and (2) are not necessarily

identical.

Consistency with the (modified) Taylor equation [38]

is expected if the influence of dislocation density on the
flow stress is dominant,

rT ; _ee ¼ ro þ aMGbq1=2; ð6Þ

where rT ; _ee is the applied stress at a given temperature and

strain rate,G is the shearmodulus, b is theBurgers� vector,
a is a constant (typically 0.2–0.4 [31,38–42], although the

Taylor factor,M , may not always be accurately known in

the reported data leaving some uncertainty in this value),

and ro is the stress required to move a dislocation in the
absence of other dislocations that can arise as a result of

solutes, Peierls-type stresses, grain-size strengthening, etc.

M can vary from 1 (pure shear) to about 3.67 for single

crystals and is typically, in tension, 3.06 for polycrystals.

This equation was shown to reasonably describe the 304

datawithin the five-power-law regimeby assuming thatro

was approximately equal to the yield stress of the an-

nealed alloy. Furthermore, the value of a for 304 was
within the range observed in other metals at lower tem-

peratures where dislocation hardening is confirmed. In

principle, if Eq. (6) is applicable, then the phenomeno-

logical relationship of (2) should reduce to the Taylor

relationship of Eq. (2).

The first part of this work will demonstrate this same

Taylor equation will apply to pure aluminum (with a

steady-state structure), having both a much higher
stacking fault energy than stainless steel and an absence

of substantial solute additions. Second, it will be shown

that the microstructure and plastic flow characteristics

of aluminum undergoing primary (Stage I) creep under

either constant-stress or constant strain-rate power-law

creep conditions are consistent with Taylor hardening.

This latter point is important since it has long been

suggested that because the total dislocation density de-
creases during primary creep under constant-stress con-

ditions, the ‘‘free’’ dislocations cannot rationalize

hardening during this stage.
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2. Analysis

2.1. Steady-state behavior

Fig. 1 shows earlier data [31] by the author where the
elevated temperature flow stress of stainless steel is

plotted as a function of the square-root of the (total)

dislocation density in the subgrain interior. The data

reflects steady-state structures as well as specially pre-

pared specimens of stainless steels having various com-

binations of k and q microstructures produced by

utilizing a variety of thermal and mechanical treatments.

The specimens were mechanically tested at a given
temperature and strain rate that nearly corresponded to

the five-power-law creep range. It was found that the
Fig. 1. The elevated temperature yield strength of 304 stainless steel as

a function of the square root of the dislocation density (not associated

with subgrain boundaries) for specimens of a variety of subgrain sizes.

(Approximately five-power-law temperature/strain-rate combination.)

Based on [31].

Table 1

Taylor equation a values for various metals

Metal T=Tm a [Eq. (6)]

304 0.57 0.28

Cu 0.22 0.34

Cu 0.22 0.31

Ti 0.15 0.37

Ag 0.24 0.19–0.34

Ag 0.24 0.31

Al 0.51–0.83 0.20

Fe – 0.23

Note: a values of Al and 304 stainless stress are based on dislocation densi

and these values would be adjusted lower by a factor of 1.4 if line-length pe
(Frank network) dislocation density not associated with

subgrain boundaries dominated the strength, described

by Eq. (6). Furthermore, as just mentioned, a ¼ 0:28,
which is consistent with observed values for Taylor

hardening of about 0.2–0.4 at ambient temperature for
pure metals. Some typical values of from the literature

as well as this study are listed in Table 1. One compli-

cating issue with Table 1 is that the value of a is affected

by the way q is calculated or reported. If q is measured

as line length per unit volume, then the value of q is

roughly twice that of q reported as intersections per unit

area, thus affecting the constant a by a factor of about

1.4. The values by the author for Al and 304 are
intersections per unit area, but the units of others of

Table 1 are not known. Fig. 7 utilizes line length per unit

volume.

The steady-state flow stress is sometimes described by

Eq. (4):

rss=G ¼ C2ðqssÞ
p
;

where p is an exponent 1–2. Sometimes, p is chosen as

0.5 and

rss ¼ C2GðqssÞ
1=2 ð7Þ

(where C is a constant) and the ‘‘classic’’ Taylor equa-

tion (e.g., Eq. (6)) has been suggested. However, this
relationship between the steady-state stress and the

steady-state dislocation density is not for a fixed tem-

perature and strain rate. Hence, it is not of a same type

of equation as the classic Taylor equation. That is, this

later equation tells us the dislocation density not asso-

ciated with subgrain boundaries that can be expected for

a given steady-state stress which varies with the tem-

perature and strain rate. However, according to Eq. (2),
if the strength is exclusively provided by q, then the

strength is temperature dependent. Eq. (7) is expected to

be athermal [43,44]. Eq. (6), however, contains a tem-

perature dependent ro term.
Notes Ref.

ro 6¼ 0, polycrystal [31]

ro ¼ 0, single crystal [38]

1–6 slip crystal

ro ¼ 0, polycrystal [38]

ro ffi 0:25–0:75 flow stress [39]

Polycrystal

Stages I and II single crystal [40]

M ¼ 1:78–1

ro 6¼ 0

ro ¼ 0, polycrystal [41]

ro 6¼ 0, polycrystal This study

ro 6¼ 0, polycrystal [38]

ties of intersections per unit area. The units of the others are not known

r unit volume is utilized.



Fig. 2. The compensated steady-state strain rate versus the modulus

compensated steady-state stress for 99.999 pure Al, based on [59].
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A similar experiment illustrated in Fig. 1 has also

been performed on steady-state structures of aluminum

[36,45]. In one case [36], aluminum specimens were de-

formed to various steady state stresses at a given tem-

perature by varying the applied strain rate. The strain
rate was quickly changed to a common strain rate after

steady state was achieved and the new plastic flow stress

(at a fixed temperature and strain rate) was noted. The

subgrain sizes were measured at each steady state, so

that the dependence of the flow stress at a specific

temperature and strain rate on the subgrain size could

be determined. Eq. (2) was basically formulated based

on these experiments. In another case [45] three speci-
mens were deformed at various temperatures and strain

rates, again, to steady state. The specimens were

quickly cooled to 300 �C and re-deformed at a fixed

strain rate. The new flow stress (again, at a fixed tem-

perature and strain rate) was also related to the mea-

sured (steady state) subgrain sizes produced at the

higher temperatures. The data in both cases suggests a

phenomenological relationship between the flow stress
at a fixed temperature and strain rate and the (steady

state) subgrain size (the network or the dislocation

density within the subgrain was not considered):

rT ; _ee ¼ ro þ k1ð1=kssÞ0:7; ð8Þ

where k1 is a constant. It should be noted that the ro

term is a substantial fraction of the steady-state flow
curve (as illustrated subsequently) despite the high pu-

rity (also see Fig. 6(a)). Thus a ‘‘friction stress’’ unre-

lated to dislocation hardening is still appropriate, just as

with the stainless steels case. Again, the two phenome-

nological equations (2) and (8), in principle, are equiv-

alent at a fixed temperature and strain rate.

Eq. (3) is based on steady-state deformation. Since

the steady-state subgrain size is generally related to the
steady-state dislocation density qss,

1=kssð Þ ¼ K 00 qssð Þp; ð9Þ

where, as pointed out earlier, p may vary from 1 to 2 [1].

Hofmann and Blum�s [46] careful measurements suggest
a value of about 1.6. Substituting Eq. (9) into Eq. (8)

suggests that for steady-state structures of aluminum

(deforming under a non-steady-state ‘‘reference’’ tem-

perature and strain rate),

rT ; _ee ¼ ro þ a0MGbq0:43; ð10Þ
where ro is roughly the yield stress of the annealed

aluminum at the reference temperature and strain rate.

This suggests that the same classic Taylor equation that

can be used to describe elevated temperature dislocation

hardening in stainless steel is applicable here, as well. An

important additional question to assess the validity of

the Taylor equation is to modify the dislocation density
exponent to 0.5 in Eq. (10) and assess the value of a. If
both the phenomenological description of the influence

of the strength of dislocations in high purity metals such

as aluminum have the form of the Taylor equation and

also have the expected values for the constants, then it

would appear that the elevated temperature flow stress is
provided by the Frank network rather than subgrain

walls.

Fig. 2 plots modulus-compensated steady-state stress

versus diffusion-coefficient-compensated steady-state

strain rate. Fig. 3 illustrates the well-established trend

between the steady-state dislocation density (line length

per unit volume) and the steady-state stress. The steady-

state flow stress can be predicted at a reference strain
rate (e.g., 5� 10�4 s�1), at a variety of temperatures,

with an associated steady-state dislocation density from

these two figures. If Eq. (6) is valid, then the values for a
could be calculated for each temperature, by assuming

that the annealed dislocation density and the ro values

account for the annealed yield strength measured in this

study and reported in Fig. 4.

Fig. 4 reports new experiments by the author while
Figs. 6 and 8 were produced by the author and co-

workers in previously reported experiments [31,33]. The

experimental details of these experiments are carefully

described in these references. The Al specimens are all of

99.999% purity and annealed at 425 �C in vacuum prior

to testing. All mechanical tests were performed at a

strain rate of 5� 10�4 s�1. The grain sizes of tests re-

ported in Fig. 4 were about 1 mm while those reported
in Figs. 6 and 8 were about 1/4–1/2 mm. Specimen sizes

were 25.4 mm gage length and 5.1–6.4 mm dia. Grain

and subgrain sizes for the author�s (and the other in-

vestigations reported in the other figures) data are based



Fig. 4. The tensile (0.2% offset) yield strength of 99.999% pure Al as a

function of temperature at _ee ¼ 5� 10�4 s�1.

Fig. 5. The values of the constant a in the Taylor equation (6) as a

function of temperature. The alpha values depend somewhat on the

assumed annealed dislocation density. Hollow dots, q ¼ 2:5� 1011

m�2; solid, q ¼ 1011 m�2.

Fig. 3. The average steady-state subgrain intercept, k, density of dis-

locations not associated with subgrain walls, q, and the average sep-

aration of dislocations that comprise the subgrain boundaries for Al

(and Al–5 at.% Zn that behaves, mechanically, essentially identical to

Al, but is suggested to allow for a more accurate determination of q by

TEM). Based on [60].
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on an average line intercept. Dislocation densities are

reported using a surface intersection technique under

g< 220 > two-beam conditions in the TEM, where
about 5/6 of all dislocations are imaged. Dislocation
densities were taken at foil thicknesses of 1 lm in order

to minimize dislocation escape from the foil. TEM thin-

foil specimen preparation techniques avoided any

damage that could introduce artifact dislocations.

Fig. 5 reports the resulting a values. Fig. 5 indicates,

first, that typical values of a are within the range of

those expected for Taylor strengthening. Said another

way, strengthening of (steady state) structures can be
reasonably predicted based on a Taylor equation. The

strength we predict, based only on the (network) dislo-

cation density and completely independent of the het-

erogeneous (subgrain) dislocation substructure. This

point is consistent with the observation that the elevat-

ed-temperature yield strength of annealed, polycrystal-

line aluminum [high-angle boundaries (HABs) only] is

essentially independent of the grain size [47]. It has
further been established that for a fixed grain size/sub-

grain size, the flow stress is independent of large varia-

tions in the misorientation [33]. Furthermore, the values

of a are completely consistent with the values of a in

other metals (at high and low temperatures) in which

dislocation hardening is established (see Table 1). The

fact that the higher temperature a values of Al and 304

stainless steel are consistent with the ambient-tempera-
ture values is consistent with the athermal behavior of

Fig. 5. The non-near-zero annealed dislocation density

observed experimentally may be consistent with Ardell

et al. suggestion of network frustration creating a lower

limit to the dislocation density.

One point to note is that in Fig. 5 the variation in a
with temperature depends on the value selected for the

annealed dislocation density. For a value of 2.5� 1011

m�2, the values of the alpha constant are nearly tem-

perature independent, suggesting that the dislocation

hardening is, in fact, theoretically palatable in that it is

athermal. The annealed dislocation density for which

athermal behavior is observed is that which is very



Fig. 6. The work-hardening at a constant strain-rate creep transient for Al illustrating the variation of k; q; d, and hkave over primary and secondary

creep. The bracket refers to the range of steady-state dislocation density values observed at larger strains [e.g., see (b)]. From [33].
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close to the value observed by the author (Fig. 6), and

suggested by Blum [48]. The suggestion of athermal

dislocation hardening is consistent with the model by

Nes [44], where, as in the present case, the temperature
dependence of the constant (or fixed dislocation sub-

structure) structure flow stress is provided by the im-

portant temperature-dependent ro term.

It perhaps should be mentioned that if it is assumed

both that ro ¼ 0 and that the dislocation hardening is

athermal [i.e., Eq. (7) is ‘‘universally’’ valid] then a is

about equal to 0.53, or about a factor of two larger than

anticipated for dislocation hardening. Hence, aside from
not including a ro term which allows temperature-

dependence, the alpha term appears somewhat large.

2.2. Primary creep behavior

The trends in dislocation density during primary

creep have been less completely investigated for the case

of constant strain-rate tests than constant-stress creep
tests. Earlier work by the author [31] on 304 stainless

steel found that at 0:57Tm (and the same strain rates as
Fig. 1), the increase in flow stress by a factor of three is

associated with increases in dislocation density with

strain that are consistent with the Taylor equation. That

is, the q versus strain and stress versus strain give a r
versus q that ‘‘falls’’ on the line of Fig. 1 [49]. Similarly,

the aluminum primary transient in Fig. 6, where the

dislocation density monotonically increases to the stea-

dy-state value under constant strain-rate conditions, can

also be shown consistent with the Taylor equation.

Challenges to the proposition of Taylor hardening for

5-power-law creep in metals and Class M alloys include

the microstructural observations during primary creep
under constant-stress conditions. For example, it has

nearly always been observed during primary creep of

pure metals and Class M alloys that the density of dis-

locations not associated with subgrain boundaries in-

creases from the annealed value to a peak value, but

then gradually decreases to a steady-state value that is

between the annealed and the peak density [50–55] (e.g.,

Fig. 7). Typically, the ‘‘peak’’ dislocation density value,
qp, measured at a strain level that is roughly one-fourth

of the strain required to attain steady state (ess=4), is a



Fig. 7. The constant-stress primary creep transient in Al–5 at.% Zn

(essentially identical behavior to pureAl) illustrating the variation of the

average subgrain intercept, k, density of dislocations not associated with
subgrain walls, q, and the spacing, d, of dislocations that comprise the

boundaries. The fraction of material occupied by subgrains is indicated

by fsub. The subgrain size during primary creep reflects those regions of

the grain where subgrain formation is observed. Based on [61].
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factor of 1.5–4 higher than the steady-state qss value. It
was believed, by some, difficult to rationalize hardening

by network dislocations if the overall density is de-

creasing while the strain rate is decreasing. Therefore, an
important question is whether the Taylor hardening,

observed under constant strain-rate conditions, is con-

sistent with this observation. This behavior could be
interpreted as evidence that most of these dislocations

have a dynamical role rather than a (Taylor) hardening

role, since the initial strain rates in constant-stress tests

may require by the equation,

_ee ¼ b=Mð Þqmv ð11Þ
a high mobile (nonhardening) dislocation density, qm,

that gives rise to high initial values of total density of
dislocations not associated with subgrain boundaries, q,
where v is the dislocation velocity. That is, of the total

density of dislocations not associated with subgrain

boundaries, at any instant, some are mobile (qm) while

some are obstacles, perhaps as links of the Frank net-

work (q� qm). As steady state is achieved and the strain

rate decreases, so does qm and in turn, q.
More specifically, Taylor hardening during primary

constant-stress creep may be valid based on the fol-

lowing argument:

From Eq. (11) _ee ¼ qmvb=M : We assume [56]

v ¼ k1r1 ð12Þ
and, therefore, for constant strain-rate tests,

_eess ¼ k1b=M½ �qmr: ð13Þ
The ep (plastic strain) is small at the onset of yielding

in a constant strain-rate test ð _ee ¼ _eessÞ, and there is only

minor hardening, and the mobile dislocation density is a

fraction, f o
m, of the total density,

f o
mq ep¼0ð Þ ¼ q

m ep¼0ð Þ
therefore, for aluminum (see Fig. 6)

q
m ep¼0ð Þ ¼ f o

m0:64qss ðbased on q at ep ¼ 0:03Þ; ð14Þ

where f o
m is basically the fraction of dislocations in the

annealed metal that are mobile at the yield stress (half

the steady-state flow stress) in a constant strain-rate test.

Also from Fig. 6, ry=rss ¼ 0:53. Therefore, at small

strains,

_eess ¼ f o
m0:64 0:53ð Þ k1b=M½ �qssrss ð15Þ

(constant strain rate at ep ¼ 0:03).
At steady state, r ¼ rss and qm ¼ f s

mqss, where f s
m is

the fraction of the total dislocation density that is mo-

bile at steady state and

_eess ¼ f s
m k1b=M½ �qssrss ð16Þ

(constant strain rate at ep > 0:20).
By combining Eqs. (15) and (16) we find that fm at

steady state is about 1/3 the fraction of mobile disloca-

tions in the annealed polycrystals ð0:34f o
m ¼ f s

mÞ. This
suggests that during steady state only 1/3, or less, of

the total dislocations (not associated with subgrain

boundaries) are mobile and the remaining 2/3, or more,

participate in hardening. The finding that a large frac-

tion are immobile is consistent with the observation that

increased dislocation density is associated with increased



Fig. 8. The predicted dislocation density (– – –) in the subgrain interior

against strain for aluminum deforming under constant-stress condi-

tions is compared with that for constant strain-rate conditions (––).

The predicted dislocation density is based on Eq. (18) which assumes

Taylor hardening.
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strength for steady-state deformation and constant

strain-rate testing. Of course, there is the assumption

that the stress acting on the dislocations as a function of

strain (microstructure) is proportional to the applied

flow stress. This is sensible (and the fraction is probably
unity) for a network model. Furthermore, we have

presumed a 55% increase in q over primary creep with

some uncertainty in the density measurements.

For the constant-stress case we again assume

_eeepffi0 ¼ f p
m k1b=M½ �qprss ðconstant stressÞ; ð17Þ

where f p
m is the fraction of dislocations that are mobile at

the peak (total) dislocation density of qp, the peak dis-

location density, which will be assumed equal to the

maximum dislocation density observed experimentally

in a q–e plot of a constant-stress test. Since at steady

state from Eq. (15),

_eess ffi 0:34f o
m k1b=M½ �qssrss

by combining with Eq. (17),

_eeepffi0= _eess ¼
f p
m

f o
m

� �
3qp=qss ðconstant stressÞ ð18Þ

ðf p
m=f

o
mÞ is not known but if we assume that at macro-

scopic yielding, in a constant strain-rate test, for an-

nealed metal, f o
m ffi 1, then we might also expect at small

strain levels and relatively high dislocation densities in a

constant-stress test, f p
m ffi 1. This would suggest that

fractional decreases in _ee in a constant-stress test are not

equal to those of q. This apparent contradiction to

purely dynamical theories (i.e., based strictly on Eq. (11))

is reflected in experiments [50,51,53,55] where the kind of
trend predicted in Eq. (18) is in fact observed. Eq. (18)

and the observations of _ee against e in a constant-stress

test at the identical temperature can be used to roughly

predict the expected constant stress q–e curve in alumi-

num at 371 �C and about 7.8 MPa; the same conditions

as the constant strain-rate test of Fig. 6. If we use small

plastic strain levels (i.e., e ffi ess=4, where q values have

been measured in constant-stress tests), we can deter-
mine the ratio (e.g., _eee¼ðess=4Þ= _eee¼ess ) in constant-stress

tests. This value seems to be roughly 6 at stresses and

temperatures comparable to Fig. 6 [11,50,51,57,58]. This

ratio was applied to Eq. (18) [assuming ðf p
m=f

c
mÞ ffi 1]; the

estimated q–e trends, in a constant-stress test in Al at 371

�C, are shown in Fig. 8. This estimate, which predicts a

peak dislocation density of 2:0qss, is consistent with the

general observations discussed earlier for pure metals
and Class M alloys, that qp is between 1:5qss and 4qss

(1.5–2.0 for aluminum). Thus, the peak-behavior ob-

served in the dislocation density versus strain trends,

which at first glance appear to impugn dislocation net-

work hardening, is, actually, consistent, in terms of the

observed q values, to Taylor hardening.

Two particular imprecisions in the argument above

are that it was assumed (based on some experimental
work in the literature) that the stress exponent for the

elevated temperature (low stress) dislocation velocity,

v, is one. This exponent may not be well known and

may be greater than 1. The ratio (qp=qss) is multiplied

from a value of 3 in Eq. (18) to higher values of

3½2n�1�, where n is defined by v ¼ rn. This means that

the observed strain-rate ‘‘peaks’’ would predict smaller
dislocation peaks or even an absence of peaks for the

observed initial strain rates in constant-stress tests. In

a somewhat circular argument, the consistency be-

tween the predictions of Fig. 8 and the experimental

observations may suggest that the exponents of 1–2

may be reasonable. Also, the values of the peak dis-

location densities and strain rates are not unambigu-

ous, and this creates additional uncertainty in the
argument.
3. Summary

Previous work on aluminum and stainless steel show

that the density of dislocations within the subgrain in-

terior influences the flow stress for steady-state sub-
structures and primary creep under constant strain-rate

conditions. The hardening is consistent with the Taylor

relation if a linear superposition of solute/lattice hard-

ening (ro, or the stress necessary to cause dislocation

motion in the absence of a dislocation substructure) and

the dislocation hardening (ffi aMGbq1=2) is assumed.

Here is assumed that the fraction of immobile disloca-

tions (q� qm) is a constant fraction of the total dislo-
cation density. It appears that the constant, a, is

temperature independent and, thus, the dislocation

hardening is athermal. Furthermore, it is shown that

constant-stress creep behavior where the total disloca-

tion density (q) decreases during primary (hardening
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stage) creep, is actually consistent with Taylor harden-

ing. The increase in total dislocation density simply re-

flects the high initial strain rates in a constant-stress test.

The obstacles for dislocation motion in this case are still

the network dislocations.
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