Event Details

Oct16Wed

AME Seminar

Wed, Oct 16, 2024
3:30 PM - 4:30 PM
Location: SSL 202
Speaker: Ananya Balakrishna, UC Santa Barbara

Talk Title: Phase Transformations in Multifunctional Materials

Abstract: Phase transformation materials are characterized by their ability to rapidly and reversibly switch between distinct properties, such as insulating and conducting, paramagnetic and ferromagnetic, or Li-rich and Li-poor. These transformations, however, are accompanied by abrupt structural changes in the crystal lattices, which can nucleate defects, accumulate strain energy, and accelerate material decay. We investigate these transformations in multifunctional materials from the viewpoint of Ericksen’s multiple energy wells. By doing so, we identify important links between material constants, crystallographic microstructures, and macroscopic properties. This approach to understanding material behavior from the perspective of energy landscapes may suggest new ways to design materials with improved properties and lifespans. In this talk, I will present our findings on phase transformations in battery electrodes (intercalation compounds), photomechanical materials (molecular crystals), and soft magnetic alloys. Most of this work has primarily been conducted by Delin Zhang (PhD candidate at USC/AME) and Devesh Tiwari (MS from USC/AME).

Biography: Ananya Renuka Balakrishna is an Assistant Professor in the Materials Department at the University of California Santa Barbara. She received her B.Tech degree in Mechanical Engineering from the National Institute of Technology Karnataka and her Ph.D. in Solid Mechanics and Materials Engineering from the University of Oxford. Before her current appointment, she was a Lindemann Postdoctoral Fellow at MIT and the University of Minnesota and joined the faculty in the Department of Aerospace & Mechanical Engineering at the University of Southern California in 2020. Her research group develops theoretical models to understand the interplay between fundamental material constants and microstructural instabilities, and how they collectively shape the physical response of a material.

Host: AME Department

More Info: https://ame.usc.edu/seminars/

Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1